Skip to content Skip to footer

Underground Tests of Quantum Mechanics by the VIP Collaboration at Gran Sasso

Symmetry 15, 480 (2023)

Fabrizio Napolitano et al

Modern physics lays its foundations on the pillars of Quantum Mechanics (QM), which has been proven successful to describe the microscopic world of atoms and particles, leading to the construction of the Standard Model. Despite the big success, the old open questions at its very heart, such as the measurement problem and the wave function collapse, are still open. Various theories consider scenarios which could encompass a departure from the predictions of the standard QM, such as extra-dimensions or deformations of the Lorentz/Poincaré symmetries. At the Italian National Gran Sasso underground Laboratory LNGS, we search for evidence of new physics proceeding from models beyond standard QM, using radiation detectors. Collapse models addressing the foundations of QM, such as the gravity-related Diósi–Penrose (DP) and Continuous Spontaneous Localization (CSL) models, predict the emission of spontaneous radiation, which allows experimental tests. Using a high-purity Germanium detector, we could exclude the natural parameterless version of the DP model and put strict bounds on the CSL one. In addition, forbidden atomic transitions could prove a possible violation of the Pauli Exclusion Principle (PEP) in open and closed systems. The VIP-2 experiment is currently in operation, aiming at detecting PEP-violating signals in Copper with electrons; the VIP-3 experiment upgrade is foreseen to become operative in the next few years. We discuss the VIP-Lead experiment on closed systems, and the strong bounds it sets on classes of non-commutative quantum gravity theories, such as the 𝜃–Poincaré theory.

Leave a comment

A Novel Approach to Parameter Determination of the Continuous Spontaneous Localization Collapse Model

Entropy 25, 295 (2023)

Kristian Piscicchia et al.

Models of dynamical wave function collapse consistently describe the breakdown of the quantum superposition with the growing mass of the system by introducing non-linear and stochastic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable consequences of the collapse phenomenon depend on different combinations of the phenomenological parameters of the model—the strength 𝜆 and the correlation length 𝑟𝐶—and have led, so far, to the exclusion of regions of the admissible (𝜆−𝑟𝐶) parameters space. We developed a novel approach to disentangle the 𝜆 and 𝑟𝐶 probability density functions, which discloses a more profound statistical insight.

Leave a comment

On the role of initial coherence in the spin phase-space entropy production rate

New Journal of Physics 25, 013030 (2023)

Giorgio Zicari, Barış Çakmak, Özgür E Müstecaplıoğlu and Mauro Paternostro

Recent studies have pointed out the intrinsic dependence of figures of merit of thermodynamic relevance—such as work, heat and entropy production—on the amount of quantum coherences that is made available to a system. However, whether coherences hinder or enhance the value taken by such quantifiers of thermodynamic performance is yet to be ascertained. We show that, when considering entropy production generated in a process taking a finite-size bipartite quantum system out of equilibrium through local non-unitary channels, no general monotonicity relationship exists between the entropy production and degree of quantum coherence in the state of the system. A direct correspondence between such quantities can be retrieved when considering specific forms of open-system dynamics applied to suitably chosen initial states. Our results call for a systematic study of the role of genuine quantum features in the non-equilibrium thermodynamics of quantum processes.

Leave a comment

Optimal quantum control via genetic algorithms for quantum state engineering in driven- resonator mediated networks

Quantum Science and Technology 8, 025004 (2023)​

Jonathon Brown, Mauro Paternostro and Alessandro Ferraro

We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms. In particular, we focus on superconducting platforms and consider a network of qubits—encoded in the states of artificial atoms with no direct coupling—interacting via a common single-mode driven microwave resonator. The qubit-resonator couplings are assumed to be in the resonant regime and tunable in time. A genetic algorithm is used in order to find the functional time-dependence of the couplings that optimise the fidelity between the evolved state and a variety of targets, including three-qubit GHZ and Dicke states and four-qubit graph states. We observe high quantum fidelities (above 0.96 in the worst case setting of a system of effective dimension 96), fast preparation times, and resilience to noise, despite the algorithm being trained in the ideal noise-free setting. These results show that the genetic algorithms represent an effective approach to control quantum systems of large dimensions.

Leave a comment

A scheme for multipartite entanglement distribution via separable carriers

New Journal of Physics 24, 123003 (2023)

Alessandro Laneve, Hannah McAleese and Mauro Paternostro

The ability to reliably distribute entanglement among the nodes of a network is an essential requirement for the development of effective quantum communication protocols and the realization of useful quantum networks. It has been demonstrated, in different contexts, that two remote systems can be entangled via local interactions with a carrier system that always remains in a separable state with respect to such distant particles. We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes to achieve various entanglement distribution patterns. We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network. We provide examples showcasing the flexibility of our approach and propose a scheme of principle for the experimental demonstration of the protocol.

Leave a comment

Deploying an Inter-European Quantum Network

Advanced Quantum Technologies 6, 2200061 (2022)

Domenico Ribezzo et al.

Around 40 years have passed since the first pioneering works introduced the possibility of using quantum physics to enhance communications safety. Nowadays, quantum key distribution (QKD) exited the physics laboratories to become a mature technology, triggering the attention of States, military forces, banks, and private corporations. This work takes on the challenge of bringing QKD closer to a consumer technology: deployed optical fibers by telecommunication companies of different States have been used to realize a quantum network, the first-ever connecting three different countries. This work also emphasizes the necessity of networks where QKD can come up besides classical communications, whose coexistence currently represents the main limitation of this technology. This network connects Trieste to Rijeka and Ljubljana via a trusted node in Postojna. A key rate of over 3 kbps in the shortest link and a 7-hour-long measurement demonstrate the system’s stability and reliability. The network has been used to present the QKD at the G20 Digital Ministers’ Meeting in Trieste. The experimental results, together with the interest that one of the most important events of international politics has attracted, showcase the maturity of the QKD technology bundle, placing it in the spotlight for consumer applications in the near term.

Leave a comment

Levitated Micromagnets in Superconducting Traps: A New Platform for Tabletop Fundamental Physics Experiments

Entropy 24(11), 1642 (2022)

Andrea Vinante, Chris Timberlake and Hendrik Ulbricht

Magnetically levitated microparticles have been proposed as mechanical sensors with extreme sensitivity. In particular, micromagnets levitated above a superconductor can achieve very low levels of dissipation and thermal noise. In this paper, we review recent initial experiments and discuss the potential for using these systems as sensors of magnetic fields and rotational motion, as well as possible applications to fundamental physics.

Leave a comment

Contacts

Project manager
Irene Spagnul
ispagnul@units.it
Department of Physics
University of Trieste

Socials

Co-funded by the European Commission’s
Horizon Europe Programme under GA 101046973

QuCoM-Quantum Control of Gravity with Levitated Mechanics © 2024. All Rights Reserved.