Skip to content Skip to footer

Potential and limitations of quantum extreme learning machines

Communication Physics 6, 118 (2023)

L. Innocenti, S. Lorenzo, I. Palmisano, A. Ferraro, M. Paternostro, and G. M. Palma

Quantum extreme learning machines (QELMs) aim to efficiently post-process the outcome of fixed — generally uncalibrated — quantum devices to solve tasks such as the estimation of the properties of quantum states. The characterisation of their potential and limitations, which is currently lacking, will enable the full deployment of such approaches to problems of system identification, device performance optimization, and state or process reconstruction. We present a framework to model QELMs, showing that they can be concisely described via single effective measurements, and provide an explicit characterisation of the information exactly retrievable with such protocols. We furthermore find a close analogy between the training process of QELMs and that of reconstructing the effective measurement characterising the given device. Our analysis paves the way to a more thorough understanding of the capabilities and limitations of QELMs, and has the potential to become a powerful measurement paradigm for quantum state estimation that is more resilient to noise and imperfections.

Project manager
Irene Spagnul
Department of Physics
University of Trieste


Co-funded by the European Commission’s
Horizon Europe Programme under GA 101046973

QuCoM-Quantum Control of Gravity with Levitated Mechanics © 2024. All Rights Reserved.